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Introduction 

 

  

Indian astronomy has been the object of intense study by Western scholars since the seventeenth 

century, before that by generations of Arabic scholars, and of course by Indian scholars themselves 

over the centuries. Nevertheless we continue to have disputes about the very nature of the subject, 

illustrating the fact, I suppose, that Indian astronomy is never quite what it seems to be. In the past 35 

years, there has been a particularly acrimonious dispute centred on the researches of Roger Billard and 

David Pingree, both now deceased. I will try to cover what seem to me to be the salient aspects of the 

matter. 

 

 

 

Method of Deviations 
 

 

Roger Billard in 1971 wrote his L’Astronomie indienne, at a time when Pingree’s researches were in 

full spate. Billard’s approach was essentially a refinement of what people have always done when 

approaching ancient or medieval astronomical texts, that is to carry out a comparison with the 

calculations made by means of modern astronomical parameters, as a ‘reality check’ in general, and by 

way of dating in particular. For example Neugebauer & van Hoesen published a collection of 

horoscopes from Greek literary and epigraphical sources, all of which were dated by means of 

calculations from modern formulae.
2
 Billard’s results depended on plotting the ‘deviation curves’, that 

is the graph of the ancient mean longitude minus the modern, as a function of time. This was then 

subjected to a precise statistical analysis, mainly to fix the date of the text. The distinction between 

‘mean’ and ‘true’ longitude fits the Ptolemaic theory very well, since the ‘true’ longitude is expressible 

as a linear function of time (the ‘mean’) plus a trigonometric expression (the ‘equation’), which itself 

depends on one or more linear functions of time (‘anomaly’, ‘centre’, etc.). This distinction between 

mean and equation is not so clear in modern planetary theory, even when the results of solving the 

equations of motion are expressed in ‘semi-analytical’ form, that is a sum of terms involving 

polynomials and trigonometric expressions. Such a form allows a distinction between mean and 

equation, but here it is sensible to include in the mean those parts of the trigonometric expression which, 

although periodic, have very long periods, of the order of centuries. This is particularly applicable to 

Jupiter and Saturn, which interact in a sort of resonance with a period of the order of 800 years. In the 

non-Ptolemaic theories of ancient astronomy, such as Babylonian or Chinese, the distinction between 

mean and equation (or anomaly) has to be established by means of a suitable transformation of the 

procedure. For example I have converted the summed zigzag model of the Babylonian System B to the 

form of mean + equation, by representing the zigzag function as a Fourier series.
3
 

 

 

                                                 
1 Affiliated Research Scholar, Department of History and Philosophy of Science, Cambridge University. 
2 Neugebauer (1959). 
3 Mercier 2007b. 



 

 

Āryabhaṭa 

  
This is a recalculation of the deviation curves such as were published in 1971 by Roger Billard.

4
 It is 

just one of a great many, based on the numerous canons presented in the Sanskrit sources. 

 

 
Fig.1. The deviation curves for the canon of Āryabhaṭa 

Legend: ☉ Sun ☊ Lunar node ♂ Mars 

 ☾ Moon ☿ Mercury ♃ Jupiter 

 Γ Lunar apogee ♀ Venus ♄ Saturn 

 
 

Each deviation curve represents the excess of the mean longitude calculated according to the text 

over the modern mean. Plainly the curves form a tight bundle at a year very near to 500; here Mercury 

must be excepted, and this is generally the case with all canons produced over the centuries, down to 

and including Copernicus. The general downward slope of the curve is due to the fact that sidereal 

longitudes are used in the canon, as is the case generally in Indian astronomy. Indeed, the sidereal 

longitudes are in excess of the (modern) tropical one by the precession, and the downward slopes of the 

deviation curves is just a measure of that precession, of the order of one degree in 70 years.  

The mean longitudes of the canon are fixed by ‘revolution numbers’ (bhagaṇa), integer valued 

parameters that determine the number of revolutions over the long base line of 4320000 years. For 

example for the Moon and Saturn these are respectively 57753336, and 146564. It is simple to observe 

that if one of these bhagaṇa is changed by ±1, then the deviation curve in 499 (3600 years from the 

Kaliyuga) will change by ±0.3
o
. This results at least on the assumption that the mean longitude is zero 

at the Kaliyuga, evidently an a priori assumption made by Āryabhaṭa. Since the bundle of curves 

would be noticeably disturbed if any of then were moved by ±0.3
o
 we conclude that the values of the 

bhagaṇa are the best possible subject to this assumed initial condition. 

The choice of meridian of reference affects the curves, so that for example if computed for a 

meridian further east, the curve for the Moon would move upward. We may therefore combine the year 

coordinate in the display shown here with a choice of meridian to find the optimum combination.  

Let Di be the excess of the ancient mean longitude over the modern, the index i running from 1 to 9 

(Sun, Moon, lunar apogee, lunar node, Mercury, Venus, Mars, Jupiter, Saturn). The summation may 

however be restricted to a subset of N items, a subset denoted here by I. Then we may consider either 

the simple sum of squares of Di, represented by Q1, or the sum of the squares relative to the mean of Di 

over that selection, represented by Q0 : 

                                                 
4 Billard 1971. 
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The latter Q is to be used if we want to locate the node relative only to the bundle of curves, in effect 

disregarding the effect of precession, which determines the general sloping character of the bundle. 

Billard introduced a simple notation to indicate the subset I, and whether Q is absolute or relative.  For 

example (0 1111 00000) means that only the solar and three lunar deviations are selected, while the 

first 0 indicates that Q0 is calculated. 

 

The quantity Q depends on the year t and the meridian φ. As a rule there is a ‘best’ year to and a 

‘best’ meridian φo, when Q will take on a minimum value. Near this minimum point, Q as a function of 

t and φ is represented approximately by the quadratic expression, 
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The coefficients hij are determined by a numerical analysis of the deviation curves, such as those 

plotted above, but with each of the curves computed for a range of meridians as well as a range of years. 

For the present example, the canon defined in the Āryabhaṭīya, we have in Fig. 2, a plot of the level 

contours of Q, when the deviations are relative and restricted to the Sun, Moon, lunar apogee and node, 

the situation denoted by (0 1111 00000). Here the minimum value of Q0 is located at to = 498±31.7, 

φo = 80.8±5.9; the statistical tolerances are derived from these coefficients. In other words it is clear 

that the observations upon which the mean longitudes were based were carried out not only in the 

lifetime of Āryabhaṭa, who was born in CE 476, but for a meridian running through central India. 

 

 
Fig. 2. Āryabhaṭa, level curves of Q0, (0 1111 00000). 

 

In Billard’s survey of the canons he looked only for the optimum year; the extension to the 

optimum meridian is due to Mercier. Billard always assumed that the optimum year was subject to 

Gaussian statistics, an assumption which was a serious flaw in the statistical aspect of his work. In my 

work on the optimum meridian, I realized that we have here a problem of least squares with a small 

number of parameters (never more than 9), and that there is therefore a considerable departure from 



 

Gaussian statistics. In fact the parameters to and φo are subject to the ‘Student’ distribution, as it is 

called.
5
  

Pingree, faced with these results of Billard continued to argue that Āryabhaṭa must nevertheless 

have found a way to derive his mean longitudes from earlier, essentially Greek, results.
6
 He was never 

willing to accept that Āryabhaṭa, or indeed any other Indian astronomer, had been able to make 

observations, or had been able to reduce these to obtain such accurate mean longitudes. It is however 

plainly impossible to create mean longitudes many centuries before the year 500 which could somehow 

be in such very precise agreement with observations at just this time, but not in neighbouring years. For 

the bundle of curves shows that these mean longitudes were already in disagreement with observations 

even 20 years earlier or later, a disagreement that only increases, indeed very rapidly, the further one is 

from the optimum year. That is the meaning of the statistical limit ±31.7. If Āryabhaṭa’s mean 

longitudes were such as to be in close agreement with observations over a very long time base, 

extending back several centuries, then we might concede that he might have employed a canon that had 

been created centuries earlier, but that is entirely contrary to what is found. A critical review of 

Pingree’s article of 1976 is given later in this chapter. 

At any time in the history of astronomy, from 500 BCE down to the present, astronomical models, 

or canons, are a mixture of theoretical schemes and empirical conditions. Modern theoretical schemes, 

depending on relativistic dynamics, are infinitely more sophisticated than anything known in earlier 

times, and yet even now this theoretical structure has to be fitted to the observed facts, since no theory 

can yet tell us how heavy the Sun is, or the planets, or where the planets were initially on January 1, CE 

2000. So in the time of Āryabhaṭa, although we have a theoretical framework that is essentially Greek 

in character, employing for example trigonometry that is indisputably Greek in origin (in spite of the 

important use of the sine in place of Ptolemy’s chord), nevertheless, new empirical conditions 

appropriate to the India of CE 500 have replaced whatever mean longitudes had been used centuries 

earlier with the same Greek framework. There is, of course, an immensely difficult, and as yet unsolved, 

historical problem remaining, namely to discover the continuity in the transmission to India of the 

Greek theoretical framework. It is to be emphasized that the Indian theoretical schemes are different in 

a number of details from anything known in Greek sources (see Ch. 8.f, above). 

 

 

DEVIATION CURVES OF TRUE LONGITUDES 

In the preceding displays the deviation curves showed the difference between ancient mean and modern 

mean. It is of course illuminating to compare in the same way the ancient and modern true longitudes. 

This difference of true longitudes includes the difference of equations, which include terms of short 

period, such as a day, or a month. Therefore, if plotted over a long stretch of time the difference would 

just be a blur, so that it requires to be plotted on a rather short time scale. 

To be sure, the variations are greater than one finds for Ptolemy’s Almagest, especially for the 

Moon, since as one can see, the magnitude of Āryabhaṭa’s lunar deviation varies greatly with a period 

of some 6 months, revealing the need for the improvements that were built into Ptolemy’s theory. In 

Figs. 3, 4 we have the deviation curves for the true longitudes of Āryabhaṭa and Ptolemy. 

 

 

                                                 
5 Mercier 1987. 
6 Pingree 1976. 



 

 
 

Fig. 3 Deviations between the true longitudes of Āryabhaṭa, and the modern true longitudes, centred on 

the epoch 499 Mar 21, KY+3600
y
. 

 

 

 

 
 

Fig. 4 Deviations between the true longitudes of the Almagest, and the modern true longitudes, centred 

on the year 141. 

 

The general situation of Ptolemy’s curves, in his own time, shows that they are too small by about 

one degree, which is due merely to his dependence on the Hipparchian solar theory. The same display 

at the time of Hipparchus shows curves averaging close to zero, while at the time of Āryabhaṭa the 

curves for the Almagest are roughly 3 degrees negative. It is noticeable, incidentally, that the variation 

in the solar deviation curve is smaller with the canon of Āryabhaṭa, in spite of the rather simpler nature 

of the Indian solar equation. 



 

It has been argued by Pingree that even if the Indians had tried to fix the mean longitudes by 

observation, that is, somehow by reduction from the observed position, they would not have succeeded, 

for two reasons. The first is that the equations of the planets were insufficiently precise, and secondly 

because they had no adequate star catalogue. The latter objection fails because the planets can be 

logged against the Sun, as in Babylonian astronomy, and to a large extent this was done by Ptolemy as 

well. As to the first reason one can see from the deviations of the true longitudes that it would be 

sufficient to log the planet over a few synodic periods in order to arrive at a fair adjustment of the mean 

in relation to the Sun. Here we have in Fig. 5 the true deviations of Saturn and the Sun. Clearly 

observations over the interval of years shown here would allow for an adjustment of the mean 

longitude of Saturn. We should reflect that we do not actually know when Āryabhaṭa wrote the work, 

only that he chose 499 Mar 21 as the epoch, and that the statistically optimum date is around 510. He 

may have gone on observing the planets, perhaps up to 530, so as to cover a full range of synodic 

behaviour of the planet. One should remember also that although we know the date of birth of 

Āryabhaṭa, and have established when the canon was best suited to observations, we do not know when 

when it was finally written, perhaps only decades later than the optimum date. 

 

 

 
 

Fig. 5. Deviations of the true longitudes of the Sun and Saturn. 

 

Romaka Siddhānta 
 

Varāhamihirā, an author of the later 6
th

 century, wrote extensively on astrology, and it is in these works 

that one finds a great many Greek terms in Sanskrit guise, including the Zodiacal signs (kria, tāvuri, 

jituma, etc.) and other technical terms relating to Greek planetary theory (such as kendra < κέμτξ̖ξμ). 

In his Pañcasiddhāntika we have accounts of five (‘Pañca-’) canons.  This work is not as well 

organised as it might be, contrasting in that respect with his astrological treatises, and K.V. Sarma has 

argued that the text as we have it (represented by two extant manuscripts) represents only the first draft 

of the work.
7
 One of these canons, the Romaka Siddhānta, provides an illuminating link between 

Alexandrian origins and the later Indian context.
8
 That the work referred to Alexandria is clear enough, 

for that town is named as Yavanapura, and the interval between that place and Ujjain is given expressly 

(xv.19): 

 

Siṃhācārya has declared that the total day count (dyugaṇa) commences at sunrise in Laṅkā. The 

preceptor of the Yavanas has said that the day commences for the Yavanas 10 mūhurtas in the night. 

 

                                                 
7 Sarma 1995. 
8 This canon is analysed with varying degrees of success by Thibault & Dvivedi 1889, Neugebauer & Pingree 

1970-1, Sastry 1978 (reproduced in Sastry 1989), Billard 1980, van der Waerden 1988a, and Sastry & Sarma 1993. 



 

Since 10 mūhurtas = 20 nāḍīs = 0;20 days = 8 hours, we have here the equation: sunset+8 hours at 

Yavanapura = sunrise at Ujjain; that is, sunrise-4 hours at Yavanapura = sunrise at Ujjain. In other 

words, Ujjain is 4 hours ahead of Yavanapura. While this difference is in poor agreement with the true 

difference of longitudes (77;50-29;55, or 3;4 hours), it agrees very closely with the entry in Ptolemy’s 

Geography VIII.26.13, 

 

ἡ δὲ Ὀζηνὴ τὴν μεγίστην ἡμέϱαν ἔχει ὡϱῶν ιγ δ´ ἔγγιστα, καὶ διέστηκεν Ἀλεξανδϱείας 
πϱὸς ἀνατολὰς ὥϱαις γ 𐅵 δ´. 
At Ujjain the longest day is approximately 13¼ hours, and is distant to the East from Alexandria by 

3 ¾  hours.
9
 

 

He also informs us that Ujjain was the residence of the king Τιαστανοῦ (or Τιβαστανοῦ), Chaṣṭana 
of the Kṣatrapa dynasty, but at the time of this epoch, it was ruled by the Gupta King Chandragupta I. 

He also gives the precise longitudes of Alexandria and Ujjain (IV.5.9, VII.1.63, respectively): 

Alexandria 60;30 Ujjain 117;0, differing by 56;30. Evidently it was not this precise difference, but the 

round figure 60, that was used in the conversion of the meridian of reference to Ujjain.  

If Siṃhācārya then referred the canon to sunrise at Ujjain, this contrasted with Lāṭācārya who, in 

the preceding verse xv.18, had referred it to sunset at Yavanapura: 

 

The weekday is obtained from the dyugaṇa commencing from a stated point of time, of a particular 

day at a particular place. Ācārya Lāṭa(deva) has said that the day begins at mid-sunset at 

Yavanapura. 

 

These two individuals, who are unknown from other sources, were clearly instrumental in adapting the 

canon from the meridian of Alexandria to that of Ujjain. Now Lāṭācārya is evidently the name of some 

Master from the Lāṭa country, a region in southern Gujerat, and this suggests the route which the 

transmission followed, from the port and emporium Barygaza, through the region of Avanti to Ujjain. 

Under the name Lāṭadeva, he is also noted in I.3 as the commentator on the Pauliśa and Romaka 

siddhāntas. This region Lāṭa is fully recorded in Ptolemy’s Deography under Λαξ̖ικὴ, (VII.1.4, 

VII.1.62), a region including Βαξύ̖γαζα (bhṛgukaccha, present day Broach, at the mouth of the 

Narmada), and Ujjain, ̓Οζημὴ βαςίλειξμ Τιασταμξυ,̃ the royal seat of the Western Satrap Cāṣṭana 

(fl.130).  

The epoch of the work is given in I.8 as Śaka 427 complete, at the start of the light half of Caitra, at 

sunset atYavanapura, starting with Monday. In order to convert this to the Julian date, we might use the 

calendar implied by the Āryabhaṭīya, for example. According to that the mean new Moon occurred a 

few minutes before sunrise at Ujjain on Monday Mar 21 (J.D. 1905588.75). In the analysis of the 

deviation curves, to be given presently, this epoch of the Romaka siddhānta will be confirmed. The 

sunset at Yavanapura stated in the verse must have been that of the previous evening, Mar 20.
 10

 Al-

Bīrūnī, in his India, quotes from the Pañcasiddhāntika, and apparently on the strength of that, states 

that Lāṭa is the author of the Sūryasiddhānta, and that the Romaka Siddhānta (of the Pañcasiddhāntika) 

was written by Śrīṣeṇa, but that latter attribution is not made by Varāhamihira, although it is supported 

by Brahmagupta, when he reviews earlier treatises, notably in Chapter XI (Tantraparīkṣā), of his 

Brāhmasphuṭasiddhānta, śl. 45. As a result Dikshit argued that there were two versions of the Romaka, 

one known to Varāhamihira, and another compiled by Śrīṣeṇa some time after Varāhamihira and before 

Brahmagupta.
11

 

The mean motions of the Sun, Moon, anomaly and node are given in Pañcasiddhāntika VIII.1-8. 

There has been some difficulty in establishing the correct mean motions and the correct epoch, but the 

correct result given here is due to Billard (1980).
12

 The following elements are derived from the text. 

By ‘radix’ is meant the position at the Epoch date 505 Mar 21, while the ‘motion’ is the daily rate of 

motion; both the radix and the motion are in revolutions, not degrees. 

 

 

                                                 
9 In the earlier edition of Nobbe (1845) has καὶ διέστηκεμ Ἀλεναμδϱείας πϱὸς ἔω ὥϱαις δ, ‘distant to the East 

from Alexandria by 4  hours’, but this was rejected in the new edition of Stückelberger and Grasshof (2006). 
10 This epoch date was given correctly by Sastry 1978 (reproduced in Sastry 1989), correcting Neugebauer  & 

Pingree 1970-1, Part I, p.8, where it is set one day later. 
11 Dikshit 1981:8f. 
12 The mean longitudes presented by Billard in an unpublished article were published by Mercier 1987, and by van 

der Waerden 1988a. 



 

 

 radix (sunrise) motion 

Sun   -65/54787 150/54787 

Moon  -1984/1040953 38100/1040953 

Anomaly  664/3031 110/3031 

Node  -56278/163111 -24/163111 

Table 1 

 

In the text the radices of the anomaly and node are understood to be given for sunset, but when 

transferred to sunrise, in keeping with the radices for Sun and Moon, the ‘609’ of the text (VIII.5a) 

becomes 609+110/2=664, and the ‘26266’ of the text (VIII.8a) becomes 56266+24/2=56278. Expressed 

in degrees per day the daily motion of the Sun is 360150/54787, while the year is 54787/150 = 

365.24666... = 365¼-1/300, identical to the value used for the tropical year used by Hipparchus and 

Ptolemy. The Moon’s daily motion is 36038100/1040953, where the large denominator is just 

54787x19, so that we rightly suspect that the 19-year cycle is involved. Indeed the implied synodic 

month is just 1954787/35250 (= 29.530582 days), which is equal to 19/235 times the year. Moreover 

1040953 days = 19150 years = 2850 years, apparently a ‘Dreat Year’ appropriate to this work.  

 

 
Fig. 6. Deviation curves for the Romaka siddhānta 

 

In Fig. 6 the deviation curves for Sun and Moon are computed for an epoch 1905588.75, and the 

meridian 90 E of Greenwich. Indeed the curves intersect precisely for the year 400.0, and meridian 90.9. 

Note that statistical limits cannot in this case be established, since of course we have only three 

parameters for the statistic (111000000), and therefore a unique solution in fixing the year and meridian. 

If we tried a sunset epoch at Alexandria, say 1905588.25, and a trial meridian of 30, the optimum 

meridian would be ­90. In other words the given parameters work perfectly well for sunrise at Ujjain, 

and not at all for sunset at Alexandria. The optimum meridian 90.9 is situated some 60 degrees East of 

Alexandria, by its modern longitude (29;55 E), an interval exactly in agreement with the interval of 4 

hours given in the text (xv.19), as noted above.  

Sastry (1978) argued that the lunar radix ‘1954’, should be read 10984.
13

 He was misled by the 

application to this canon of the meridian difference between Yavanapura and Ujjain of 7;20 nāḍi 

(equivalent to 44
o
) which is given in the chapter on the Pauliśa siddhānta, III.13.9, but evidently not 

intended for the Romaka siddhānta. However when the deviation curves are inspected after making this 

proposed change in the mean Moon, the epoch would then have to be for sunset, and for a meridian 

somewhere west of Greenwich. This proposal is therefore excluded. It is considerations of this sort 

which well illustrate the merits of Billard’s deviation curves. 

                                                 
13 In VIII.4 Sastry proposed changing kṛtāṣṭanavakaika (1984) to kṛtāṣṭanavakhaika (10984). 



 

Of the various canons that are known to involve the 19-year cycle in one way or another, this canon 

exhibits the most direct illustration, but is also the least accurate. That is, we may compare it with the 

Almagest on the one hand, and the Jewish calendar on the other. In the Jewish calendar (in the form 

attributed to the Talmudic sage R. Adda bar Aḥava) the synodic month is the ‘classic’ Babylonian 

value, which is extraordinarily precise, while the year is precisely in the proportion 19/235.  

The Pañcasiddhāntikā gives also a number of details of the equations of Sun and Moon according 

to the Romaka Siddhānta. The apogee of the Sun is given as 75
14

. This, as van der Waerden pointed out, 

agrees with the pre-Hipparchian solar model of the parapegma of Callipus.
15

 The maxima of the 

equations of Sun and Moon are 2;23,23 and 4;56,48, respectively. To summarise, the Romaka canon 

appears indeed to be a simple Indian adaptation of an early Greek system. 

 

 

 

Brāhmasphuṭasiddhānta 

 

Brahmagupta was the author of two influential canons, the Khaṇḍakhādyaka and the 

Brāhmasphuṭasiddhānta. The former depends essentially on the second canon of Āryabhaṭa (that is, the 

canon presented as the Sūryasiddhānta in the Pañcasiddhāntikā), whereas the Brāhmasphuṭasiddhānta, 

composed later, is evidently Brahmagupta’s own work. The deviation curves for this show that while 

there is improvement in so far as the various curves agree much better in their slope, which suggests 

that they may have been to some extent based on a broader time base, yet do not so clearly point to a 

unique date of composition or observation. Nevertheless they clearly belong to Brahmagupta’s period, 

mid- to late sixth century.  

Every Indian canon has a chronological frame, and this is indeed one of the more striking 

characteristics of Indian astronomy. While the origin of Āryabhaṭa’s frame is set at the Kaliyuga, and 

indeed this legendary prehistoric event is given for the first time a precise sense with his canon, 

Brahmagupta set the origin very much earlier, so that the base line is 4,320,000,000 years (so-called 

kalpa), instead of the mahayuga 4,320,000 years of Āryabhaṭa. Brahmagupta’s chronological scheme is 

indicated in outline in the following diagram. here KYaud means Kaliyuga audayika (sunrise), which is 

the origin of Āryabhaṭa’s frame.  

 

 
Brahmasphuṭasiddhānta zero                         KYaud                           Śaka 

Kalpa          (-3101 Feb 18 Dawn)                   (78 Mar 16) 

↓                      ↓     ↓ 

 

        days:   

 ← 720,634,442,712 = 0.45671,577,916,450,000                                → ←   3179 years                → 

        years: 

 ← 1,972,944,000 = 0.45674,320,000,000                                           → 

 

Fig. 7. The chronology of the Brāhmasphuṭasiddhānta. 

 

The lengthened time base has the consequence, as remarked, of allowing deviation curves that are 

more nearly parallel, starting from zero longitude at a far earlier date, but also with the much greater 

revolution numbers a finer adjustment should be possible, compared with the system of Āryabhaṭa. In 

this case a change of ±1 in any revolution number leads to a change ±0.0003
o
 in the deviation. 

However it is evident that this was not exploited to the full. 

This canon was one of those that came to be transmitted to the Islamic world, where it appears as 

the Zīj of al-Khwarezmi, early 9
th

 century. Nor does Indian influence end there, for the use of ‘Indian’ 

sidereal coordinates continues with the Toledan tables, where the Indian model of precession, 

ayanāṃśa, becomes ‘accession and recession’. Beyond that the Kaliyuga even figures in the 

chronological basis of the Latin Alfonsine Tables ca 1310. 

In contrast to the majority of the Indian canons, the deviation curve for the Sun here vanishes 

around the year 565; in the majority it vanishes around the year 510.  

                                                 
14 Pañcasiddhāntikā VIII 2. 
15 van der Werden (1988a). 



 

 
 

Fig. 8. The deviation curves for the Brāhmasphuṭasiddhānta. 

 

 

 

Brāhmasphuṭasiddhānta + bīja 
 

The Sanskrit term bīja, literally ‘seed’, refers to a set of adjustments added to the mean longitudes of a 

given canon. The elements of the bīja are linear functions of time, if not simply constant. The result is a 

new canon whose mean longitudes are still linear functions of time, with new radices and new rates of 

motion. In the Brāhmasphuṭasiddhānta there is such a set of bīja in two verses I 59-60. The same set, 

but expressed in somewhat different terms, is found in a number of other works, such as the Siddhānta 

Śiromaṇi of Bhaskāra II (12
th

 century)
16

.  

Under the terms of this bīja, the mean longitudes of the Sun, Moon and planets are increased by the 

amount μKY/200, where KY is the number of years from the Kali Yuga, and μ is a multiplier  (in 

minutes) given as  follows. 

 

Sun Moon apogee node Mercury Venus Mars Jupiter Saturn 

-3´ -5´ -2´ -2´ 52´ -15´ 1´ -5´ 4´ 

         

For example the mean Sun begins at 0 at the Kaliyuga, but with a rate decreased by 3/(60200) = 

0;0,0,0,54 degrees per year compared with that of the Brāhmasphuṭasiddhānta. Thus in the interval 

from the Kaliyuga to the epoch of Āryabhaṭa, the mean Sun is reduced by what amounts to ­0;54 

degrees. 

The deviation curves are shown in Fig. 9. The optimum year for the statistic 0111100000 is 

1024±46. This is consistent with the date of the Siddhānta Śiromaṇi but is evidently wrong for the 

Brāhmasphuṭasiddhānta, a work of the seventh century. Thus it is clear that the two verses I 59-60 are 

a later interpolation in Book I of that work. This is an excellent example to show the utility of the set of 

deviation curves.  For it clear that the bīja was introduced by someone intent are fitting observations in 

the late tenth –early eleventh centuries. 

                                                 
16 Siddhānta Śiromaṇi, grahagaṇita, madhyagatisādhanādhikāraḥ, śl 7,5; Śāstri (1929) p. 35. Billard (1971) p. 121, 

gives references to other works that also give this set of bīja. 

 



 

This is only one of many interesting examples where such a modification was introduced into a 

canon, with the effect of markedly shifting the date of optimum empirical agreement. 

 

 
Fig. 9 Deviation curves for the Brāhmasphuṭasiddhānta+Bīja 

 

 

 

 

 

Dṛggaṇita 

 

The canon of Āryabhaṭa is typical of the later canons, insofar as they show real agreement with the 

observed sky only around one date. We may take the much later Dṛggaṇita (‘Observation and 

calculation) of Parameśvara, for example, whose deviation curves are shown in Fig 9. 

 

 
Fig. 9 The deviation curves for the Dṛggaṇita of Parameśvara 

 

In spite of the convergence at a later date these deviations do have one essential feature in common 

with the earlier canons, for the Solar curve passes through zero around the year 510. This illustrates 



 

simply that the same sidereal coordinates continue to be used throught out the history of the Indian 

canons.  

 

 
Fig. 10. The level curves of Q0 for the Dṛggaṇita of Parameśvara, with selection (0111101111). 

 

The optimum year and meridian for the stastic (0111101111) are 1458.3±32.0, 78.8±11.1, that is, based 

on all the deviations save Mercury. The year agrees perfectly well with the known date of this south 

Indian astronomer, and of course the meridian is that of central India. 

Here, however, Plofker sees an opportunity to cast doubt on the merits of Billard’s work. She seems 

to notice only his remark, that the deviation curves show that the canon is ‘non seulement spéculatif, 

mais de convergence bien médiocre’. Certainly for an astronomer who claimed to carry out so much 

observation the final results are indeed disappointing, and we see as is usual with the Indian canons that 

everything is forced into the yuga system, so that the bīja of the canon which define the departure from 

the canon of Āryabhaṭa depend on time measured from the Kaliyuga. Moreover the node of the curves 

in his own time ought to be tighter than it is, given the author’s claims. In other words one cannot judge 

the canon simply by what Parameśvara claims, but only by the end result, which does not live up to his 

claims. It as if Plofker chose not to examine the results of the analysis of the canon, but to take 

Parameśvara simply at face value. That is to miss the point entirely of a scientific analysis of the canon. 

 

Dhīvṛddhidatantra 
 

A number of other canons, however, behave more as one might expect from Greek and Arabic 

examples - that of Lalla, for example. 



 

 
 

Fig. 11. The deviation curves for the Dhīvṛddhidatantra of Lalla 

 

 
Fig. 12. The level curves of Q for the Dhīvṛddhidatantra of Lalla, selection (1111101111) 

 

This canon is defined by a set of bīja applied to the Āryabhaṭīya, but in contrast to the application noted 

above made to the Brāhmasphuṭasiddhānta, where the increment was propotional to the passage of 

time from the Kaliyuga, in this case the increment is proportional to the lapse of time from the epoch of 

the Āryabhaṭīya, expressed in form μ(year­495)/250.  This destroys the assumption of a common 

Great Conjunction at the Kaliyuga, in effect doing away with the simple yuga a priorism of Āryabhaṭa. 

The deviation curves shown in Fig. 11 are remarkable in that they do not now converge to a well 

defined node. It is relatively unusual - in the Indian context - to find a bundle of deviation curves that 

run together over a long period. The optimum year and meridian (including all longitudes except 

Mercury) are 512.2±69.9, 80.7±2.2, where of course the tolerance in the year is quite large  Indeed for 

the  Sun and Moon alone (but with the node and apogee), the optimum year is 626±545, in other words 

the canon would suit any year up to the 11
th

 century. Billard presented  an suggestive argument leading 

to the year 898 as a key year in the construction of the bīja, but that was no more than an attempt to 



 

squeeeze some information out of the form of the bīja.
17

 As to the date of composition of this work one 

is left to speculate, since no date of composition is stated in it. Chatterjee suggests a date between the 

early 8
th

 and the early 11
th

 centuries.
18

  

Plofker, as part of her attempt to discredit Billard’s work, made the rather confused remark that 

Lalla ‘mentions bīja-corrections referring to the year 748. Billard finds that the parameters ... are 

optimized for about 898’.
19

 However there is no inconsistency here and, in particular, Lalla made no 

such reference to the year 748; this year arises from speculation based on the denominator 250 in the 

bīja coupled with the base year 498. 

Billard made a sharp distinction between these two types of canon, which he called speculative and 

non-speculative. He saw Āryabhaṭa’s approach as governed by a strong apriorism, expressed in the set 

of revolutions numbers, and the assumption of a great conjunction at a remote Era, the Kaliyuga. Any 

chance of agreement with observations in earlier centuries was automatically excluded by this 

apriorism.. In order to behave in this way the mean longitudes of the canon were no longer forced all to 

be zero at a certain remote date. In contrast, the non-speculative canon was constructed so as to agree 

with observations over a long time base, so that it conformed to our sense of astronomy as natural 

history. 

Now if we examine again the deviations presented by the ‘sidereal’ Ptolemy, we see something so 

like the work of Lalla, that we should ask ourselves whether the Indians had received something of the 

sort from foreign sources. That source could not be the Almagest or the Handy Tables because the 

trigonometric principles of the planetary equations were never those of Ptolemy. But we may suppose 

that Āryabhaṭa had in fact received something like the system presented by Lalla’s canon, but which he 

then ‘forced’ into a framework of the yuga system in order to satisfy the imperative of the aprioristic 

yuga. Although in the existing literature Lalla’s system is only available to us from a ninth century text, 

we should not rule out the possibility that Āryabhaṭa himself had something much like that to start with. 

After all, the optimum year of Lalla’s canon coincides with that of Āryabhaṭa. It makes more sense that 

way than to assume that someone in the ninth century had been able somehow to resurrect earlier 

observations so as to obtain a longer time base. So often in Indian astronomy things were not what they 

seem to be. 

There is an interesting comparison to be made with our own sciences of Physics and Astronomy. 

Physics depends heavily on certain a priori constants, like the charge on the electron or Planck’s 

constant. No one would attempt to plot the changes in these quantities over time: the latest 

measurements just result in a new value of the constant, and there is no question of plotting any true 

alteration in the course of time in nature. Our Astronomy on the other hand is regarded more as natural 

history, so that we are prepared to plot the alteration in fundamental parameters, such as the length of 

the day, over the course of the centuries. The attitude of the typical Indian astronomer had much in 

common with our physicist. 

 

 

 

Pingree’s narrative 
 

 

By Pingree’s narrative I intend to refer to certain key proposals which mark his attempt at an 

historiography of Indian astronomy. 

 

1. The Brāhmasphuṭasiddhānta takes its parameters from the Pitāmahasiddhānta, which he assigns to 

the 5
th

 century.
20

 

2. The Persian ‘observation’ of the solar apogee of about CE 450 was taken from the 

Pitāmahasiddhānta.
21

  

3. The parameters of the two canons of Āryabhaṭa were calculated for his time, ca. CE 500 from some 

Greek tables, and were not based on observations by Āryabhaṭa himself.
22

 

4. The date of Āryabhaṭa II.
23

 

                                                 
17 Billard 1971: 144. 
18 Chatterjee 1981: XIV. 
19 Plofker 2009: 117. 
20 Pingree 1965, 1970a, 1973, 1978, 1990. 
21 Pingree 1965, 1973a. 
22 Pingree 1976. 
23 Pingree 1970b, 1980. 



 

 

Throughout these many publications Pingree’s writing displays an exuberant self-confidence and 

panache, which was sufficient to disarm most potential critics. His work took a new turn following the 

publication of Roger Billard’s work in 1971. 

 

 

BRĀHMASPHUṬASIDDHĀNTA
 
 

Pingree has made much of the fact that most of the parameters of the Brāhmasphuṭasiddhānta are also 

listed in the Paitāmahasiddhānta, a text which is included in the Viṣṇudharmottara Puraṇa.
24

 Pingree 

regards this as the source, no less, of the parameters of the Brāhmasphuṭasiddhānta, and this 

assumption forms one of the major fixed points in Pingree’s narrative of the origins of Indian 

astronomy. This puraṇa, which belongs to the class of works known as upapuraṇas, is taken by Renou 

and Filliozat, for example, to belong to the period from the seventh to the tenth centuries, and 

‘probablement dépendant de Brahmagupta’.
25

 Pingree, however, would have us believe that the 

Paitāmahasiddhānta belongs to the fifth century, and that Brahmagupta had lifted his parameters from 

it. However a simple inspection of the deviation curves for the Brāhmasphuṭasiddhānta in fig. 7 above 

shows that the parameters belong to the time of Brahmagupta,. 

A further strong point against Pingree’s hypothesis is that the set of parameters in the 

Pitāmahasiddhānta is not quite complete, because it omits the Era of the work, which is certainly vital 

information. In the Brāhmasphuṭasiddhānta the Era is given as 720634442715 days before Kaliyuga. 

This Era is specified by taking a combination of manvantaras, mahāyugas and yugas, amounting to 

0.4567 of the Kalpa: 

The relevant passage in the Brāhmasphuṭasiddhānta I, 26-7 is the following: 

 

kalpaparārddhe manavaḥ ṣaṭ kasya gatāścaturyugatrighanāḥ 

trīṇi kṛtādīni kālergo  ̕gaikaguṇāḥ 3179 śakānte  ̕bdāḥ •26• 

navanagaśaśimunikṛtanavayamanaganandendavaḥ 1972947179 śakanṛpānte 

sārdhamatītamanūnām sandhibhirādyantarāntagataiḥ •27• 

 

The Kalpa, 4320000000 years, is half gone already, and in the second half there are elapsed, after its 

dawn, 6 Manu with saṃdhi, 27 Mahāyugas, and the three kṛta, etc. (kṛta, treta, dvapara : 4x, 3x, 2x 

yuga ).  

 y = 432000 (yuga) 

 g = 4y = 1728000 (saṃdhi, twilight) 

 Y = 10y = 4320000 (Mahāyuga, Caturyuga) 

 M = 71Y = 306720000 (Manu, Patriarchate) 

Therefore the number of years elapsed of this second half of the kalpa up to the Kaliyuga:  

 

g+6(M+g)+27Y+4y+3y+2y = 1972944000 years, 

 

to which is added 3179, the number of years from the Kaliyuga to the Śaka Era, to obtain the number of 

years 19729443179 elapsed of the present half of the Kalpa up to the Śaka Era. Note that 1972944000 

= 0.4567x4320000000.  

 

The solar year is 1577916450000/4320000000 = 365.2584375, therefore we have 

365.2584375x1972944000 = 720,634,442,715 days elapsed of the present half of the Kalpa to the 

Kaliyuga, which is 588465.75, -3101 Feb 18
th

, 6 am. 

 

In the Paitāmahasiddhānta, however, there is no such passage, so that the Era is unspecified. That 

means, of course, that this text as it stands could never have been used for calculations. Therefore 

when this point is taken along with the objections centred on the argument about the deviations, it is 

clear that Pingree’s hypothesis about the central role of this work, must fail. While Pingree might have 

argued that the text of the puraṇa has been corruptly transmitted to us, it seems more likely that the 

copying from Brahmagupta into the puraṇa was simply incomplete. 

Pingree’s view has had wide influence, so that just recently Plofker has repeated uncritically 

this assumption that the parameters of the Brāhmasphuṭasiddhānta were taken from the 

                                                 
24

 Pingree 1968. 
25 Renou & Filliozat 1947, Tome premier, art. 843. 



 

Paitāmahasiddhānta.
26

 Indeed her whole account of early Indian astronomy is an uncritical repetition 

of Pingree’s narrative. 

 

 

 

PERSIAN OBSERVATIONS OF THE SOLAR APOGEE 

Kennedy and van der Waerden drew attention to Chapter 8 of the Zīj al-Ḥākimī of Ibn Yūnis (CE 1003) 

where, quoting Abū’l-Qāsim Aḥmad b. Mūsa’ b. Shākir (CE 850), he reports two Persian observations 

of the position of solar apogee.
27

 The dates are not given expressly, but they are said to be about 165 

years apart, the second being earlier than the Zīj al-Mumtaḥan by about 200 years. Taking the date of 

the zīj to be about CE 815, the Persian observations would be for CE 450 and 615, apparently; this was 

Kennedy’s interpretation, which, if necessarily inexact, was not unreasonable. Ibn Yūnis reports that 

the positions of the apogees are respectively 77;55 and 80;0 for those dates. Now it is interesting that 

these positions of the apogee coincide with those given respectively by the zīj of al-Khwārizmī and by 

the early Sūryasiddhānta.
28

 Pingree tried to make something of this.
29

 For it is well known that the zīj 

of al-Khwārizmī was based on the Brāhmasphuṭasiddhānta, although the zīj in its extant form has 

radices computed for the epoch date of the Hijra (CE 622). When the apogee is calculated for the Hijra 

from the Brāhmasphuṭasiddhānta we find 77;54,32. However since the apogee moves so slowly (480 

revolutions in the kalpa of 4320000000 years), the apogee would keep to that value for many centuries, 

and is essentially the same in the year CE 450 as at the Hijra. In any case Pingree saw here support for 

his notion that the Paitāmahasiddhānta could be assigned to the 5
th

 century. Since we now know that 

the Brāhmasphuṭasiddhānta belongs only to the time of Brahmagupta, and that the passage of the 

Paitāmahasiddhānta must have been copied from the canon, some other explanation has to be found 

for the earlier of the two Persian observations. Kennedy and van der Waerden had interpreted the 

reported observation around CE 450 as indicating activity within Persia, and there is still no reason to 

reject this. Of course, it may be that the second observation, placing the apogee at 80;0, was due to 

Persian knowledge of Āryabhaṭa’s work in the form of the early Sūryasiddhānta. A remark of Severus 

Sebokht on the Indian numeral otation in an astronmoical work that gives us good reason to believe 

that the work of Āryabhaṭa was known in Persia.
30

 

 

 

THE USE OF GREEK TABLES BY ĀRYABHAṬA 

Here we subject to a detailed analysis arguments presented by Pingree in his article “The recovery of 

early Dreek astronomy from India”. There he presented arguments intended to demonstrate that 

Āryabhaṭa could have derived his mean and true parameters from Greek tables extant in his time, ca 

CE 500.
31

 Pingree wrote: 

 

But if Āryabhaṭa did not observe, how did he arrive at mean motions that produce results more 

correct for his time than any other? The answer is extremely simple: he used Greek tables of 

mean motions to compute the mean longitudes for a specific time, and thence derive the 

rotations in a mahāyuga. 

 

This is an article to which Pingree referred on numerous occasions,
32

 and which he never revised, 

although we will see presently that he had good reason to do so. It is essentially an attempt to refute 

Billard’s discovery of the true character of Āryabhaṭa’s work, as presented above. 

In his discussion he drew on three canons, the Almagest, and the two attributed to Āryabhaṭa, that is, 

the one defined in the Āryabhaṭīya, and the one presented by Varāhamihira in the Pañcasiddhāntikā 

under the name Sūrya Siddhānta. The mean parameters from which he made his calculation are listed 

in the following table, which lists all the relevant mean parameters. There is nothing new here, and they 

are listed only for convenience. 

 

                                                 
26 Plofker, 1009, pp. 67-70, 117. 
27 Kennedy & van der Waerden 1963. The manuscript references are Leiden Or.143 pp.123-5, Paris BN arab. 2495 

fol.134; the Paris MS is only a 19th century copy of the MS in Leiden. 
28 For al-Khwārizmī, Suter 1914:9. For the early Sūryasiddhānta,  Pañcasiddhāntikā IX 7. 
29 Pingree 1965. 
30 Nau 1910. 
31 Pingree 1976. 
32 Notably in Pingree 1978, Pingree 1980. 



 

 Ptolemy(Almagest) Āryabhaṭīya Sūrya Siddhānta 

 epoch at  

1448638.0 

motion in 

46656000000 

days 

epoch at  

588465.75 

motion in 

1577917500 

days 

epoch at  

588465.5 

motion in 

1577917800 

days 

Sun 330.75 45985799551 0.0 1555200000 0.0 1555200000 

Moon 41;22 614757288630 0.0 20791200960 0.0 20791200960 

Apogee 312;33 5197448311 -90 175758840 -90 175758840 

Node 317;7 -2471311567 180 -83601360 180 -83601360 

Mercury 352;40 190931950101 0.0 64573272000 0.0 6457320000 

Venus 41;52 74749631039 0.0 2528059680 0.0 2528059680 

Mars 3;32 24450529893 0.0 826856640 0.0 826856640 

Jupiter 184;41 3878160391 0.0 131120640 0.0 131119200 

Saturn 296;43 1562441331 0.0 52763040 0.0 52763040 

 

Table 2 

 

In his Table 1 Pingree presents mean longitudes according to the Almagest, calculated for the Kaliyuga 

(Noon -3101 Feb 17 + 18h, 588465.75), and in his Table 2 according to all three sources for the time of 

Āryabhaṭa, taken as Noon 499 Mar 21 (1903397). I reproduce here the entries in his Table 1. 

  

 

Ptolemy: J.D.=588465.75 

 Pingree recalculated 

Sun 314;38 314;38,5 

Moon 323;2 323;1,47 

Apogee - 16;0 

(Moon-)Node 153;39 163;38,7 

Mercury  320;14,44 

Venus -- 2;2,48 

Mars 301;55 301;54,44 

Jupiter 325;4 325;4,13 

Saturn 290;48 290;48,13 

 

Table 3 Confirmation of Pingree: Table 1. 

 

Apart from the minor typo in the lunar node his results are confirmed, so that we are clear as to what he 

mean by the ‘Almagest’.  

In his Table 2, he calculates for Noon CE 499 Mar 21 (1903397) the means from the Almagest, and 

from the two Indian canons of Āryabhaṭa, the Āryabhaṭīya, and the Sūrya Siddhānta as preserved in the 

Pañcasiddhāntikā of Varāhamihira.  The rows are labelled Saturn, Jupiter, etc., for all three canons. 

 

Ptolemy, Almagest  Āryabhaṭīya Sūrya 

Siddhānta 

Saturn-Sun 48;40 Saturn 49;12 49;12 

Jupiter-Sun 188;6 Jupiter 187;12 186 

Mars-Sun 7;8 Mars 7;12 7;12 

Venus-Sun 356;45 Venus 356;24 356;24 

Mercury-Sun 184 Mercury 186;0 180 

Moon-Sun+1 283;30 Moon 280;48 280;48 

Node-Sun+1 -7;11 Node -7;48 -7;48 

Sun -2;44,10 Sun 0;0 0;0 

 

Table 4 Corrected version of Pingree: Table 2. The numerical entries are from Pingree’s  

tables, although the labels have been corrected, as explained here. 

 

However in the first column entitled ‘Ptolemy’ he has in fact listed the quantities shown here in the 

present Table 4, now correctly labelled, that is, the synodic differences Saturn-Sun etc. Note that there 

are also errors of one degree in the lunar means, that is, he has presented the quantities Moon-Sun+1, 



 

Node-Sun+1. Since at this moment (1903397) the Sun is zero in the Indian canons it makes no 

difference whether we call the entries here Saturn or ‘Saturn-Sun’, etc.  

Setting aside the possibilty of deliberate deception, this at least confused and confusing. There is to 

begin with a distinction, between Pingree’s ‘Ptolemy’ in his Table 1, where he really does intend mean 

longitudes, and his Table 2, where he lists only synodic differences under Ptolemy: Saturn, etc. In any 

case, in the spirit of approximation which he asks us to accept, he has demonstrated a rough  agreement 

between Greek and Indian synodic differences. This near agreement is however not really very 

interesting : for it is in any case inevitable that synodic differences from the two systems system would 

be in good agreement as long as both are empirically satisfactory. An agreement between synioodic 

differences therefore demonstrates nothing about any possible historical link.  

Pingree omits from the discussion the mean Sun itself. Here we have a difference of 2;44, which is 

a significant difference, and which measures the inescapable error between any likely Greek means and 

the Indian means at this date in 499. For, the synodic differences being in agreement, then this 

disagreement in the Sun would carry over to the other means. Pingree, it would appear, wants us to 

ignore this, although it is fundamental to any consideration of whether ot not the Indians copied from a 

Greek source. 

There remain still the differences of the order of 1 degree between some of the Greek and Indian 

synodic differences. The disagreement of about 2 degrees in the Moon (even after correcting Pingree’s 

arithmetic at this point) just corresponds to the difference 2;44. 

Finally, in my extension of Billard’s approach, where the optimum meridian is established jointly 

with the year it is found that for these Indian systems the optimum meridan lies well within India, 

strongly reinforcing the view that we are dealing with real observational control in India. 

Here is his conclusion:  

 

These tables [Pingree’s Tables 1 and 2] do not prove that Āryabhaṭa used Ptolemy, but rather 

that he used some other Greek source close to Ptolemy. They also demonstrate how trivial 

Āryabhaṭa’s task was once he had a Dreek set of tables of planetary mean motions, and explain 

his apparent accuracy in the early sixth century and increasing inaccuracy as one moves away 

from his own lifetime; the first reflects the accuracy of the Greek tables, the second the 

inaccuracy of his assumption of a mean conjunction in -3101.  

 

In fact this ‘conclusion’ is worthless, for the reasons given above.  

In the remaining sections of the paper Pingree draws up a table showing the comparison between 

the various magnitudes of the equations used in the Almagest and in the Indian canons. There is in fact 

no particularly close correspondence, only a good general agreement as to the order of magnitude, as 

one would expect since in both systems there is an accommodation to the same observational data. 

Pingree, however, was never one to let the facts get in the way of a good story. 

 

 

THE DATE OF ‘ĀRYABHAṬA II’ 

Pingree attempted to refute one of the more unexpected results of Billard’s studies, that is, that the 

canon defined in the work entitled Mahāsiddhānta belonged to the early 15
th

 century, not to the mid-

tenth, as had been supposed ever since Dikshit’s analysis, made at the end of the 19
th

 century.
33

 

The work is now attributed to ‘Āryabhaṭa II’, at least by Dikshit, but this is attribution not supported 

by the commentators. In my review of the matter I examined quotations from the work by Nṛsiṃha (b. 

1586) and Minīśvara (b. 1603) who refer to the work by its name mahāsiddhānta or by a reference to 

the author as laghvāryabhaṭa, ‘the young Āryabhaṭa’
34

. In that review I also explained how Dikshit 

arrived at his erroneous conclusion that the work belonged to the late tenth century, and there also 

refuted the rather glib remarks made by Pingree. He had supposed that the argument was open and shut 

on the strength of a remark in Bhāskara’s commentary, Vāsanābhāṣya, on his own Siddhāntaśiromaṇi 

(mid-12
th

 century), where he writes (Grahagaṇita, Spaṣṭādhikāra, 65) 

 

ata evāryabhaṭādibhiḥ sūkṣmatvārthaṃ dṛkāṇodayāḥ paṭhitāḥ 

for the sake of precision decans were used for the ascensions by Āryabhaṭa and others  

 

                                                 
33 Dikshit 1981:97, Pingree 1970b, Pingree 1980, Pingree 1992, in a reply aimed at van der Waerden 1988b. 
34 Mercier 1993: 10-11. 



 

Pingree, in referring to this, wrote ‘...  Āryabhaṭa II is quoted by name by Bhāskara II in the 

commentary... ’, and indeed if the ‘II’ were somehow supported by the Sanskrit passage, it would be a 

an argument that Bhāskara II knew of the Mahāsiddhānta. However, it most clearly is not supported, 

and the reference must be to the earlier Āryabhaṭa. 

Anyone who ignored the Sanskrit text, might well be impressed by such an argument : ‘quoted by 

name’, indeed !  For the full discussion the reader is referred to my 1993 study. 

The deviations are shown in Fig. 13. 

It is interesting to consider a near contemporary work by Makaranda (b. 1438), whose canon was 

formed by a set of bīja applied to the later Sūrya Siddhānta.
35

 This set consists solely in alterations to 

the bhagaṇa  of the later Sūryasiddhānta, and is all the more impressive when compared with the very 

confused and heterogeneous deviations of that Sūryasiddhānta. For this illustrates once again that 

Indian astronomers knew well how to adapt a canon to contemporary observations. The deviations are 

shown in Fig. 14. It is helpful to compare these two results, since no one will dispute the date of 

Makaranda’s canon, while the convergence of the deviations is similar in these two cases.  

 

 
Fig. 13 Deviation curves of Mahāsiddhānta 

 

 

 
Fig. 14 Deviation curves of Makaranda 

                                                 
35 Burgess 1860: 22. 



 

 

It is disappointing to note that Plofker, in a recent volume, has repeated Pingree’s error, writing ‘we 

cannot account for the discepancy by hypothesizing that Bhāskara must have been referring instead to 

Āryabhaṭa I, since he mentions a feature peculiar to the Mahāsiddhānta of Āryabhaṭa II.’
36

 Here, like 

Pingree, she sees what she wishes to see in the text, which makes no mention of ‘II’. Besides, like 

Pingree, she ignores the result of the scientific investigation through deviation curves. 

 

 

 

DISCUSSION OF PINGREE’S WORK 

The starting point of Pingree’s reconstruction of the siddhāntic phase of Indian astronomy is his 

‘discovery’ that the mean parameters of the Brāhmasphuṭasiddhānta were in fact taken from a text 

which he dates to the mid-fifth century, the Paitāmahasiddhānta, which forms a part of the 

Viṣṇudharmottara Puraṇa.  This claim may be dismissed as worthless, for the reasons given above. It 

is clear that the quotation of these parameters in the puraṇa is a plagiarism. The essentials of this 

narrative were created by him before the publication of Billard’s work in 1971. Billard’s scientific 

analysis of many canons included the proof that the mean longitudes of the Brāhmasphuṭasiddhānta 

were established in the seventh century, and so were certainly the work of Brahmagupta, as he claimed. 

This destroyed the keystone of Pingree’s reconstruction. 

Equally worthless is the proposed comparision between the mean longitudes of the Almagest and 

the Indian systems. For it turns out on careful reading of Pingree’s articles that not the means but only 

the synodic differences, have been compared, and so nothing of interest may be concluded. On 

comparing any two empirically satisfactory systems, whether related to each other nor not, the synodic 

differences will be found to be the same, inevitably. The difficulty with Pingree’s account is that 

according to the words of his account he has compared the means, not the synodic differences. I can 

only conclude that he allowed himself to be confused, which I am afraid is not untypical of his 

approach to much of the history of astronomy.  

Pingree has always been adamant that the Indian astronomers never seriously carried out 

observations, and in this he has simply followed the consensus, which goes back to Colebrooke. He 

never attempted to meet head on either Billard’s argument, or my extension of it to the meridian 

determination. Indeed he simply ignores that level of scientific investigation. It is difficult - to say the 

least - to reconcile his attitude with the evidence presented by, for example, the Dṛggaṇita (Figs. 9, 10), 

in which all the mean longitudes have been so well adjusted to a certain date in the 15
th

 century, and for 

which one can demonstrate an optimum meridian passing through central India. However we have to 

ask ourselves whether Pingree ever understood the force of such demonstrations. He might also have 

considered the fact that the Indian calendrical systems have maintained a good correspondence with the 

true state of the heavens, as one may judge from the numerous dated inscriptions with their records of 

solar and lunar eclipses. In fact, the remarks in the foregoing sections show that his determined 

attempts to evade Billard’s conclusions only ended in failures of both scholarship and calculation. 

 

 

 

Sidereal Coordinates 
 

 

If we are to begin to follow the transmission of astronomy from the Middle East to India we have to 

consider the use of sidereal longitudes in these two distinct contexts, for the Indian canons (almost) 

invariably use that system. While Ptolemaic astronomy uses tropical longitudes throughout, we know 

that frequently elsewhere in the Greek context sidereal coordinates were used. Ptolemy, who was 

obviously aware of this convention, gave his reasons for rejecting it.
37

 Indeed, a great many Greek 

horoscopes are known which used sidereal coordinates, a fact which seems clear enough even though 

we are so often ignorant of the precise steps that were taken in the calculation.
38

 For in the long interval 

between Babylonian methods, and the establishment of Ptolemaic astronomy, there were various 

systems and canons of which we have only the roughest understanding (see Ch. 6.a here). However, 

after the Almagest was established, it is clear that horoscopes and other results based on it continued to 

                                                 
36 Plofker 1009, p. 118, n. 89. 
37 Almagest III.1 (Heiberg I 193.11). 
38 Neugebauer & van Hoesen 1959, Jones 1999. 



 

use sidereal longitudes, evidently by way of continuing a well established habit. Ptolemy’s longitudes 

were converted to sidereal equivalents by adding a motion of the solstices according to a zigzag model 

of precession preserved for us by Theon of Alexandria. This presumably satisfied the need felt by 

astrologers, in spite of Ptolemy’s rejection of sidereal longitudes.  

There are examples from this period for which Neugebauer argued for the use of sidereal 

coordinates, when in fact the results do not really seem to compel this interpretation, but in spite of that 

it is broadly true that sidereal longitudes were the popular and preferred style. For example, I have 

some doubts about whether the Demotic Stobart Tables and the evidently related Demotic Papyrus 

Berlin 8279 (see Ch. 3.a, sub notes 204 and 210), use sidereal coordinates, in spite of Neugebauer’s 

insistence.
39

 

 

 

THEON: MOTION OF THE SOLSTICES 

The model recorded by Theon as having been used in horoscopes, is reported to us in Theon’s Short 

Commentary on the Handy Tables of Ptolemy. He records the rule: 

Sidereal­Tropical = 5­(y+125)/50  

where y is the year in the Era of Augustus. 

 

This is (apparently) intended to be applied to the longitudes found from the Handy Tables.
40

 Theon in 

fact specified a zigzag rule for this precession, with limits of ±8 degrees, the effect of which is shown 

in Figs. 15.
41

 A number of ‘five-day’ almanacs were calculated from the Handy Tables with this 

correction., for example that in P. Heid. inv. 34, for the years CE 348-350, which presents Saturn, 

Jupiter, Venus, Mercury starting with the year 672 (Era of Philip). The sidereal longitudes, which are 

1;40 in excess of those computed by the Handy Tables, may be accounted for by Theonian 

precession.
42

 Jones notes a number of others among the Oxyrhynchus papyri, with dates earlier than 

this, in the range 14 BCE to CE 307. When the material is sufficiently well preserved to allow for a 

computational check they all agree with the Handy Tables together with Theon’s conversion to sidereal 

longitudes.
43

 

If the Theonian precession is added to the Ptolemaic tropical longitudes we obtain the deviation 

curves shown in Fig 15. 

                                                 
39 Neugebauer 1942, Neugebauer & Parker 1960-9, discussion in Vol. III, Part 1, pp. 232-5, edition in Vol. III, Part 

2, Plates 75-8; Neugebauer 1975:567, 456, 785-8. 
40 Tihon 1978, Ch. 12, text 236, translation 319. 
41 This zigzag behaviour is sometimes referred to as ‘trepidation’, but that term is used too often in a loose 

journalistic spirit, instead of being confined to the Alfonsine context where it properly belongs. In later Indian and 

Islamic contexts the term ‘accession and recession’ is close to the Sanskrit, Arabic or Latin terminology. 

Copernicus also referred to accession and recession. Theon only referred to a movement of the solstices, postulated 

by the old astrologers. 
42 Neugebauer (1956), Burckhardt (1958). 
43 Jones (1999), pp.45-6, 215-227. 



 

 
 

Fig 15. Deviation curves for Ptolemy + precession (Theon) 

 

The curves in Fig. 15 should be compared with those of Lalla’s canon, Fig. 11. The two bundles have 

essentially the same slope, but with a difference of nearly 3 degrees. By way of comparing the slope, 

note that the daily motion of the sidereal Sun found in this way is virtually the same as that used in the 

Sanskrit sources. The daily motion of the Ptolemaic Sun is 360/(365;14,48), while the daily motion of 

precession is 1/(80365.25); the difference is the sidereal daily motion of the Ptolemaic Sun.
44

 This 

difference corresponds to the sidereal year 365;15,33.66 days, 

360 1 360

365;14,48 80 365.25 365;15,33.66
 


, 

whereas the sidereal year used by Āryabhaṭa or Lalla is 1577917500/4320000 = 365;15,31,15. The two 

rates of motion differ by only some 2 secs p.a. 

The missing element in Theon’s account is any information as to which star, or point in the starry 

sphere, marked the origin of sidereal longitudes; some such point is essential to the system. In fact 

nothing was expressly stated by Theon on this matter, nor by Ptolemy when he mentions the sidereal 

year.
45

 In an earlier article on precession I suggested that the point opposite to Spica (α-Vir) may have 

been that origin.
46

 One can see from the above bundle of deviation curves that that of the Sunis zero 

around the year CE 328. Taking star coordinates from Ptolemy’s Almagest, where we have the ecliptic 

longitude of α-Vir as 176;40, or 174;0 in the time of Hipparchus (-127), then by the precessional 

correction of Theon’s model, one degree in 50 years, the position of α-Vir in CE 328 would be 179;41. 

We may suppose with some confidence that α-Vir was the reference star, but calculated according to 

the Hipparchian star list, and with the rate of precession that of Theon. By modern computation the 

tropical position of α-Vir is 174 in the year -149, and 180 in the year 285, but while such a calculations 

are interesting, the historical argument depends on the positions assigned to the stars by Hipparchus. 

In the discussion below of the Indian sidereal ecliptic it is shown that for an observer at latitude 36
o
 

the star α-Vir sets simultaneously with the rise of the equinoctial point in the time of Hipparchus; this 

is evident in Fig. 22. 

Strangely enough, there is now an official Indian adoption of this very point as the origin of sidereal 

longitudes, in spite of the clear use in the medieval canons for the point near ζ-Psc. I have discussed 

this modern tendency elsewhere.
47

 It happened that a number of Indian scholars, notably Venkatesh 

                                                 
44 It is in fact arguable whether or not Theon’s precession, 1 degree per 50 years, should be referred to the 

Alexandrian year of 365.25 days or the Egyptian year of 365 days, but the resulting numerical differences seem 

unimportant. 
45 Almagest III.1 (Heiberg I 193.11). 
46 Mercier 1976-7, Part II, p.52. 
47 Mercier 2007a. 



 

Bapuji Ketkar (b. 1854), were of this view, and following them, N.C. Lahiri persuaded the Calendar 

Reform Committee in 1954 to adopt this officially, and it is now to be found used in every Indian 

Pañcāṅga (popular almanach). In these popular calendars the tropical coordinates are now take from 

modern computation, but converted to sidereal longitudes by means of modern precession theory, but 

with anti-Spica as the sidereal origin. Ketkar looked for support from the Pañcasiddhāntikā, and 

proposed an emendation to the usual reading of xiv.37, so that the star would be at the midpoint of the 

14
th

 nakṣatra, placing it in effect at 180. Apart from that, we note that in the later Sūrya Siddhānta this 

star is again given the coordinate 180. Generally, however, in the Sanskrit texts, the star is placed at 

longitude 183. 

 

 

THE STANDARD SCHEME OF THE MOON 

The Pap.Ryl.27 of the Rylands Library, Manchester, contains a procedure for the computation of the 

true longitude of the Moon, and its node. This text has been much discussed, and one may consult the 

recent publication of the Oxyrhynchus Papyri both for a summary of the contents, and useful tables 

facilitating the computation.
48

 This model has been given the name Standard Scheme by Jones. It is a 

simple zigzag model, working like Babylonian System B, and of course the lunar longitude is sidereal. 

The importance of the scheme lies in the fact that we have here the explicit procedure for finding the 

position of the Moon, and not just the result for a particular date, such as we can obtain from the many 

horoscopes. In the course of Neugebauer’s analysis of the numerous horoscopes he noted the difference 

between the longitude given in the horoscope and that by modern calculation for the date, but this 

yields a wide scattering of differences and this is discussed below.  

In order to situate the Standard Scheme in the general context, one that permits an easy comparison 

with the trigonometric models, I derived for it an equivalent mean longitude and anomaly, and a mean 

node. For the sake of argument the meridian of reference is assumed to be that of Babylon. From these 

we can plot the deviation curves, which are shown in Fig. 16, along with the curve for the sidereal Sun, 

and precession, separately. Unfortunately, we lack at this time the corresponding scheme for the Sun. It 

is at once clear that the deviation curve for the Moon fits nicely with that of that Ptolemaic sidereal Sun, 

and that the curve for the Node does so as well. However the curve for the apogee shows that there is a 

difference of some 9 degrees. Now the important point about the Moon is that in this scheme the lunar 

longitude is sidereal, and yet coincides almost exactly with the sidereal Moon obtained from the Handy 

Tables. Since a sidereal longitude is measured from a conventional and arbitrary origin in the star 

sphere, we have here the striking result that the sidereal origin assumed for the Standard Scheme is the 

same as that used by the Theon’s model of precession.  

 

 

 

                                                 
48 Jones 1999, where references to earlier work will be found. 



 

 
Fig 16. Deviation curves for the Standard Scheme of the Moon, together with that of the 

Sun from Ptolemy + precession, and precession separately. 

 

 

GREEK HOROSCOPES 

Neugebauer & van Hoesen published a collection of horoscopes from Greek literary and epigraphical 

sources, so providing a wealth of material bearing on Greek methods of calculation.
49

 Those of the first 

and second centuries plainly give sidereal longitudes, and Neugebauer regularly determined the 

differences from modern calculations. Such differences are a feature of the earlier pre-Ptolemaic 

horoscopes. However the collection also included many horoscopes from the fifth century, and these 

are demonstrably based on Ptolemy (probably the Handy Tables), although you would never know this 

from their account. Neugebauer, although devoted to calculation in general and the study of Ptolemy in 

particular, failed to notice that these fifth century horoscopes were Ptolemaic in origin. This fact, 

although it has been known also to Anne Tihon and Alexander Jones, has never actually been 

published.
50

 

In Fig. 14 the individual points represent the excesses over the modern calculation, for the 

horoscopes of the first and second centuries. They include many horoscopes provided by Vettius 

Valens, whose floruit, if not known exactly, must have been in the latter half of the second century CE. 

                                                 
49 Neugebauer & van Hoesen 1959. 
50 However Neugebauer 1972:293 n.5, does allow that the astrologers of the fifth century used Ptolemy’s tables. 



 

 
 

Fig. 17. Precession by Theon, with sidereal excesses from horoscopes, including 

the almanach of CE 348/9 (P. Heid. inv. 34). 

  

The points in Fig. 17 are computed from the various horoscopes published by Neugebauer. The 

horoscopes are listed in Tables III A and III B. A further list of Ptolemaic horoscopes in given in Table 

III C. 

 

SIDEREAL HOROSCOPES
51

 

 

 Vettius 

Valens 

hours 

from 

mdnt 

Sun 

ordinal 

degrees
52

 

modern diff 

1 54 oct 29 8 ♏ 10 4;18 5;42 

3 67 sep 13 6 ♍ 25 17;58 7;2 

4 69 jul 16 11  ♋ 28 21;10 6;50 

5 75 jul 19 9 pm
53

  ♋ 27;45 24;4 3;39 

6 79 mar 16 9 pm ♓ 29 24;7 4;53 

7 79 nov 26! 4 pm ♐ 8 3;4 4;56 

8 83 may 15 7 ♉ 27 21;25 5;35 

9 85 nov 20 12 ♐ 3 29;19 5;41 

10 102 nov 28 2  ♐ 8;30 4;55 3;35 

11 105 apr 21 10  ♈ 29 29;13 -0;13 

12 109 jun 2 8 ♊ 13 9;17 3;43 

14 114 jul 26 6 pm ♌ 5 1;7 3;53 

15 114 aug 10 10 pm  ♌ 22 15;47 6;13 

16 113 sep 10! 3  ♍ 22 15;38 6;22 

17 115 jun 8 11 ♊ 20 14;41 5;19 

20 118 nov 26 10 ♏ 7 3;20 3;40 

21 119 mar 25 8 pm ♈ 7 3;9 3;51 

23 120 feb 8 7 pm ♒ 22 18;30 3;30 

                                                 
51 The dates marked (!) present inconsistencies. 
52 Except where the minutes are given. 
53 Midnight, according to Neugebauer (1975). 



 

29 121 may 18 9 pm  ♉ 29 25;36 4;24 

30 125 mar 24 8 pm ♈ 6 2;43 3;17 

32 127 oct 28 2 pm ♏ 8 3;48 4;12 

33 131 jul 10 10  ♋ 20 15;18 4;42 

34 134 feb 26 10 ♓ 9;46 6;38 3;8 

35 142 jan 24 4 ♒ 6 3;29 2;31 

36 151 feb 17 3 pm  ♓ 3 27;20 5;40 

37 151 nov 23 10 pm ♐ 2;42 0;46 1;56 

38 152 jan 8 6  ♑ 20 16;58 3;2 

41 157 nov 24 8 pm ♐ 6 2;15 3;45 

Table III A. List of horoscope dates from Neugebauer (1975), p.181. 

 

 

 

  date hours 

from 

mdnt 

Sun 

ordinal 

degrees
54

 

modern diff 

42 L 115,II 

iii,10,25 

115 feb 15 4  ♒ 29  k 25;10 3;50 

43 L 114,V 114 may 13 22  ♉ 25;18 20;54 4;24 

44  L 110,III 110 mar 15 19 ♓ 25;8 23;37 1;31 

45 No 81 

P. Lond. 130 

81 mar 31 20;36 ♈ 14;6 9;13 4;53 

46 L 76, CCAG 76 jan 24 6 ♒ 8 2;44 5;16 

47 L 40, CCAG 40 apr 16 12  ♈ 19 13;24 5;36 

Table III B. Supplementary list of horoscopes with sidereal longitudes, selected from 

Neugebauer (1975). 

 

 

source Ptolemaic source Ptolemaic 

P. Oxy 1476
55

 No 260 CCAG L478 

CCAG L380 CCAG L479 

Marinus (L412) CCAG L486 

CCAG L428 CCAG L487 

CCAG L440 CCAG L497 

CCAG L474 Stephanus L621 

Table III C. List of horoscopes calculated from Ptolemy’s tables, selected from 

Neugebauer (1975). 

 

 

STOBART TABLES AND BERLIN P.8279 

There are two Demotic Egyptian Planetary tables, the Stobart Tables, a set of four wooden tablets, and 

the Berlin Papyrus P.8279, both of which have been edited and analysed by Neugebauer.
56

 In both of 

these we have the date (as the year of the Roman Emperor, month and day) when each of the five 

planets enters a new zodiacal sign. The Berlin papyrus covers the years -15 Aug 29 to 11 Aug 30, and 

the Stobart Tables cover altogether the period 71 Aug 30 to 132 Aug 29. Since these lists give only the 

dates of sign entry, they fall well short of providing the sort of data that we  would have from a true 

ephemeris. Neugebauer, however, recovered enough to convince himself that these tables were based 

on a calculation of the sidereal longitudes of the planets, and he even attempted to determine the 

difference between the position and the tropical longitude. By way of illustration we have here in Fig. 

15 the calculated and tabulated values for Mars from Stobart Tablet C, for 5000 days from 105 Sept 13. 

 

                                                 
54 Except where the minutes are given. 
55 Not in Jones 1999. 
56 Neugebauer 1942 for the first edition and thorough analysis, Neugebauer & Parker 1960-9 for a revision of the 

edition, and brief additional remarks. 



 

 
Fig. 18. Longitude of Mars in Stobart Table C: calculated tropical longitude, and the dates of 

entry into successive signs, shown by the dots. 

 

The excess of the tabulated longitudes over the calculated are, as one can see, quite irregular. The 

excesses are shown in Fig. 18.  

 
 

Fig. 19. Longitude of Mars in Stobart Table C: excess of longitude as tabulated over the 

calculated tropical longitude. 

 

Neugebauer was content to describe this excess, for Mars, as lying in the range 1½° to 2½° , but as one 

can see from Fig. 19, the actual excess is very widely scattered, between about 0 and 6° !  For these 

dates the excess by Theon’s precession is about 4½°. For the other planets, except for Mercury, the 

situation is similar, and equally discouraging, if one hoped to find support here for any particular model 

of precession. Indeed for Mercury the excesses are negative, as Neugebauer reported. This is shown in 

Fig. 20. 



 

 

 

 

 
Fig. 20. Longitude of Mercury in Stobart Table C: excess of longitude as tabulated over the 

calculated tropical longitude. 

 

In conclusion, it must be said that while these planetary tables on the whole support the view that 

sidereal longitudes were used, there is no clear quantitative result. 

 

 

PERPETUAL TABLES 

Some horoscopes are associated with the ‘perpetual tables’, attributed to Egyptians, for example P. 

Lond 130, ll. 12-3: καμόμωμ αι̕ωμίωμ.
57

 This is dated CE 81 March 31, a horoscope with coordinates 

whose excesses lie in the range 5 to 6. The coordinates are plainly sidereal, with excess values lying 

within the group shown in Fig 17. These perpetual tables are also mentioned by Vettius Valens VI, 1, 

and (with some disapproval) by Ptolemy in the Almagest IX.2 (αἰωμίξυ καμξμξπξιίας). 
58

 

The text accompanying P. Lond 130 is unusually prolix, compared with the other horoscopes from 

either Vettius Valens, or extracted from passages in the CCAG. One can well suppose that many others 

were also calculated from these Perpetual Tables. 

  

 

THE SIDEREAL ECLIPTIC OF INDIAN ASTRONOMY 

In his Siddhānta Śiromaṇi Bhāskara II (early 12
th

 century) remarks that at the time of Brahmagupta 

precession was too small to be considered, whereas in his own time it was larger, and must be allowed 

for.
59

 Here he reminds us in effect that there is a sidereal ecliptic peculiar to Indian astronomical 

practice, one that continued unchanged from the time of Brahmagupta, and indeed from Āryabhaṭa. It is 

evident from the deviation curves of the canon of the last named author that precession was negligeable, 

for the tight node in the curves occurred when the deviations were essentially zero, that is when 

sidereal and tropical ecliptics coincided. Was that really just a coincidence ? I will argue now that in 

fact Āryabhaṭa himself created the new sidereal ecliptic, and indeed created in this way a new standard 

that was to continue not only through Indian astronomy, but in the branch of the Arabic work where 

they explicitly followed the Indian template, such as that of al-Khwārizmi, and of Zarqala in the 

                                                 
57 Neugebauer & van Hoesen 1959, No. 81 (pp. 21-8). 
58 Vettius Valens: (ed.) Kroll 243.8, (ed.) Pingree 232.29; Ptolemy: Heiberg II 211.5. 
59 Siddhānta Śiromaṇi, Drahagole : golabandha, commentary to śl 17-19. 



 

Toledan Tables, and even as late as Copernicus. The fortunes of that sidereal ecliptic were studied by 

me at length some years ago.
60

 What prompted Āryabhaṭa to redefine the sidereal ecliptic ?  

In the course of the above discussion of Pingree’s article of 1976 we have already noticed that at the 

epoch of Āryabhaṭa (499 Mar 21) the mean tropical Sun calculated according to the Almagest was 

­2;44. If on the other hand the sidereal equivalent had been found by adding precession according to 

Theon, it would be ­2;27. If Āryabhaṭa were faced with either of these he would conclude that this 

erroneous result could be corrected by altering the parameters of the tropical Sun, since he must have 

recognized from his own observations that the Spring Equinox occurred on March 21.
61

 Indeed he set 

the mean sidereal Sun to be zero at Noon on that day, and one must assume that he intended as well 

that the sidereal and tropical Sun should be equal at that point. In so doing he was defining a new 

sidereal ecliptic; this sidereal ecliptic would be used henceforth in Indian astronomy. Compared with 

the sidereal ecliptic implied by Theon’s model of precession this redefinition amounts to a shift of 

roughly 3 degrees. If it were the case, as argued above, that the point opposite the star Spica (α-Vir) 

had served in effect as the origin for Theon’s sidereal ecliptic, then a shift of 3 degrees would shift the 

origin to the point in the Hipparchian tropical ecliptic opposite to 174­3 = 171, that is to a point near to 

­9 on the Hipparchian scale, or near ­6;20, (ie  353;40) in the Ptolemaic tropical ecliptic.  

From the Indian point of view the origin point of the sidereal ecliptic was seen not only as the head 

of Meṣa (Aries), but as the head of Aśviṇī, the first of the 27 nakṣatra divisions. These nakṣatras are 

each referenced by junction stars, and the junction star nearest to the head of the first, Aśviṇī, is known 

to be ζ-Psc which is given either the sidereal longitude 0, in some texts, or in others, 0;10 short of that, 

near the end of the last nakṣatra Revatī. This identification of the star has been accepted since the 

beginning of European studies of the Indian texts, and there is no reason to question it, although there 

are doubts about the identification of some other junction stars. It is listed by Ptolemy in the Almagest 

and the Handy Tables, and of course it is known from modern listings, such as the Yale Bright Star 

Catalogue. From the modern listing we find that its ecliptic longitude is zero in 575, and 359;50 in 565; 

the latitude is -0;14.
 62

 According to Ptolemy the longitude is 353;0, with latitude -0;10. It is in fact a 

double star whose two components are of magnitudes 5.2, 6.3, respectively, but perceived together as a 

star of 4
th

 magnitude by Ptolemy.
63

 Needless to say, such a faint star was hardly likely to have been 

selected as an origin point, even though it is on the ecliptic; it is in any case in the wrong place in the 

year 499.  

If the position of the Indian sidereal ecliptic is anchored to this junction star of Revatī, but not as 

that star was to be observed at that time, how was it fixed ? We will now show that there is good reason 

to believe that the position of the star is taken from the Greek star list.  

Now in an earlier research of mine I presented a sidereal alignment that appeared to help to explain 

this situation, by way of relating the Indian ecliptic to the Greek star coordinates.
64

 This is shown in Fig. 

22, which illustrates that the Indian origin point is the junction with the ecliptic of a great circle passing 

through α Ari, β Ari, ζ Psc, and the point α opposite to α Vir. Moreover this circle is the horizon for 

the geographic latitude of 36
o
, so that α Ari, β Ari, ζ Psc lie on the eastern horizon, while α Vir is 

setting in the West. It is found that where this circle of alignment intersects the ecliptic the longitude of 

that point, reckoned from the hypothetical origin of Hipparchian coordinates, is 9;23±0;5.
65

 This 

alignment therefore has the striking property of marking the Indian zero point of the ecliptic, as that 

point of the ecliptic that rises on the Eastern horizon simultaneously with α Ari, β Ari, ζ Psc and with 

the setting of α Vir, and all at the very geographical latitude that one associates with Rhodes and 

Hipparchus.
66

  

The interval 9;23 may be taken as the precise difference between the Indian sidereal ecliptic and  

the Hipparchian ecliptic of -127. According to Ptolemy ζ Psc is at 23
o
 Psc, that is 353;0, and the 

Hipparchian position is 350;20.
 67

 Therefore the alignment places ζ Psc in Indian ecliptic at 359;43±0;5. 

The precessional change from Hipparchus to the time of Āryabhaṭa being 9;23, then over the interval 

from -127 to 499 the implied rate of precession is 53.96±0.4″ p.a., or 1 degree in 66.7±0.27 years. 

                                                 
60 Mercier 1976-7. 
61 By modern calculation on that day the mean Sun is zero at about 6 p.m. on the central Indian meridian. 
62 The calculation is based on the coordinates of ζ Psc in the Yale Bright Star Catalogue, nos.  361, 362. 
63 Magnitude is a logarithmic measure, so that if the brightness is doubled the magnitude is reduced by one. 
64 Mercier (1976-7), Part II, p.33 
65 The tolerance 0;5 allows for the evident rounding of stellar coordinates in the Greek listing, where the longitudes 

are rounded to the nearest multiple of 0;10. 
66 Although this alignment is precise for the Hipparchian positions of these stars, it is somewhat less so for the true 

positions of the stars at that time. 
67 Its true position in -127 was 350;15. 



 

Although in the extant text and quotations from his work Āryabhaṭa does not mention precession, 

we can be quite sure that like his contemporaries he knew the phenomenon. Bhāskara I in his 

commentary on the Āryabhaṭīya notes that it was known to the Romaka school, who understood the 

motion to be about 47″ p.a.
68

 Versions of precession, here denoted ayanāṃśa in terms of the Indian 

sidereal ecliptic, are found in later canons, notably the later Sūryasiddhānta, according to which the 

ayanāṃśa vanishes in 499, and with the motion 54″ p.a., which is a more typical motion. This is similar 

to many other versions of ayanāṃśa to be found in the Indian texts. In Fig. 21, a number of such 

precession models are shown, largely reproducing the graph presented in the earlier study of mine.
69

 

Here the curve of ayanāṃśa according to the later Sūryasiddhānta passes through the Hipparchian 

origin at -9;23 in the year -127. 

Much has been said above about the model presented by Theon, where the rate was 45″ p.a., and 

which was surely used with the Handy Tables, but there is also a Greek text, in an as yet unedited 

papyrus, in which sidereal coordinates are combined with a model of precession with a rate of 46″ 

p.a.
70

 

We emphasize again the implication of the above argument, that the position of the star ζ Psc in the 

list of junction stars of the nakṣatras was known to the Indian scholars according to some version of the 

Greek star list. The Indian texts place it either at 0 or at 359;50, and the latter agrees as near as matters 

with that implied by the alignment. The Indian astronomers knew of this junction star according to a 

Greek source. We ought therefore to consider as well the other junction stars, for if they knew one they 

will have known all the others as well from the Greek list. Can one infer that they knew of the 

alignment ? That is a difficult question, and certainly takes us beyond the evidence, since we must be 

clear that so far there is no direct evidence in Greek sources either. The exactness however of the 

alignment, together with the beautiful connection between Greek and Indian coordinates that it lays 

bare, leaves no doubt in my mind at least that it was really recognized at least by Hipparchus. 

 

                                                 
68 Shukla (1976), Part 2, pp. lviii-ix; commentary on Āryabhaṭīya, kālakriyāpāda i.2, p. 153. 
69 Mercier (1976), Part 2, p. 48. 
70 The edition is being prepared by Jean-Luc Fournet and Anne Tihon. 



 

 
Fig. 21. Models of precession. Legend: 3 Sūryasiddhānta (later), Karaṇa Tilaka, Tantrasaṃgraha, 

Siddhāntadarpaṇa; 4 Ibn Kammād; 2 Alfonsine; 6 Bhoja, Śrīpati, Bhāskara II, Āmarāja; 7 

Parāśara; 5 Mahāsiddhānta; 9 Karaṇa Kalpa; 10 Drahalāghava. The Hipparchian origin is 

marked by the dot at (-127, -9;23). 

 

 

 

 

 



 

 

 

 

 
 

Fig. 22. Positions of stars in α, β Aries and ζ Piscium, and anti-Spica α. The alignment circle 

through the stars is the horizon for the geographic latitude 36
0
, which also determines the Indian 

Zero point (at the head of Aśvinī near ζ Psc), where this circle intersects the ecliptic. At the time 

of Hipparchus the celestial equator passes nearly through α, and at the time of Āryabhaṭa the 

celestial equator passes through the Indian origin, near ζ Psc. The equinoctial points ♈H, ♈A 

are for the epochs of Hipparchus and Āyabhaṭa. 

 

 

NAKSHATRA  

It is widely assumed that the coordinates of the junction stars are so-called ‘polar’ longitudes and 

latitudes, as explained by Burgess.
71

 It may well be questioned however whether this is the correct 

interpretation, and I will argue in another place that the coordinates ought in fact to be taken simply as 

ecliptic. Moreover it is suggested that the list of junction stars has been corrupted through neglect, 

because in fact none of the treatises from Āryabhaṭa onwards makes any practical use of the 

coordinates, apart from the reference to the star at the origin point. In spite of the corruption of the text 

tradition, there a good half of the entries permit a reasonably clear identification, and are such that the 

longitudes are derived from Ptolemy’s list by adding 6;20 to his longitudes, or 9;0 to the hypothetical 

longitudes of Hipparchus. Shukla, in his edition of the Mahā-Bhāskarīya, claimed that in certain texts, 

namely the Mahā-Bhāskarīya, the Laghu-Bhāskarīya, and the Śiṣyadhīvṛddhida, the longitudes are 

ecliptic, while in other texts they are polar, and that ‘this explains why there are significant diffeence 

between them’.
72

 These ‘differences’, however, are slight and unsystematic, and surely are not to be 

explained in this way. 

 

                                                 
71 Burgess, 1960, Ch. VIII. 
72 Shukla, 1960, p. 102. 



 

Conclusion 
 

Billard pursued the problem of establishing the scientific content of the Sanskrit canons by applying to 

them an approach that differed little from that brought to a wide range of ancient materials by many 

scholars. What could be more reasonable than a comparison between the ancient data and a modern 

calculation ? Billard differed from others in that he plotted this quantity ‘ancient minus modern’ as a 

function of time, and so discovered the great utility of considering the bundle of such deviations. This 

provides, as it were, an X-Ray of the canon. This approach has been strangely misunderstood, as if it 

were some exotic methodology, which could be readily faulted whenever it revealed features which 

one happened to dislike, such as Pingree’s belief in the Paitāmahasiddhānta, or Plofker’s belief that 

Parameśwara had observed as successfully as he claimed. But like an X-Ray, the bundle of deviations 

shows just whatever it shows, evidence about the canon which cannot be denied, but which then has to 

be interpreted. 
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